

P-003-001616 Seat No. _____

Third Year B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2020

Mathematics : BSMT - 601 (A)

(Graph Theory & Complex Analysis - II)
(Old Course)

Faculty Code : 003

Subject Code : 001616

Time : $2\frac{1}{2}$ Hours]

[Total Marks : **70**

Instructions : (1) All questions are compulsory.
(2) Figures to the right indicate full marks.

1 Answer the following objective type questions briefly **20** in your answer-book :

- (1) Define isolated vertex in a graph.
- (2) Define : A simple Graph.
- (3) Write the degree of a pendant Vertex.
- (4) The number of vertices in a binary tree is always _____.
- (5) The vertex connectivity of a tree is _____.
- (6) Write the number of vertices in a connected graph with 2 faces and 6 edges.
- (7) The chromatic number of a complete graph K_n is _____.
- (8) A simple connected graph with 6 vertices can have at most _____ edges.
- (9) Define : Planer Graph.
- (10) Give an example of a self dual graph which is complete.
- (11) Define : Bilinear Mapping.

- (12) Find the invariant point of $w = \frac{6z - 9}{2}$

(13) Define : Conformal Mapping.

(14) Write the Maclaurin series of $\sinh z$.

(15) Find the radius of convergence of the series $\sum \frac{z^n}{n!}$.

(16) Identify the function whose power series is $\sum_{n=0}^{\infty} (-1) \frac{z^{2n}}{(2n)!}$.

(17) What is the isolated singular point(s) of $f(z) = \frac{z+1}{z^2+1}$

(18) $\text{Res} \left(z \cos \left(\frac{1}{z} \right), 0 \right) = \text{_____}$

(19) State Cauchy's Residue Theorem.

(20) What is the residue of $\tan z$ at its poles ?

2 (A) Attempt Any **Three** : **6**

- (1) State and prove the first theorem of graph theory.
- (2) Show that the complete graph K_n has $\frac{n(n-1)}{2}$ edges.
- (3) Explain Konigsberg bridge problem.
- (4) Show that the number of vertices in a binary tree is always odd.
- (5) In any simple connected planar graph with n vertices, e edges and f faces, show that $e \leq 3n - 6$.
- (6) Define path matrix and write the properties of path matrix.

(B) Attempt Any **Three** : **9**

- (1) Show that the number of vertices of odd degree in a graph is always even.
- (2) What is the smallest integer n such that the complete graph K_n has at least 500 edges?
- (3) Prove the statement : "In a complete graph K_n with n vertices, there are $\frac{n-1}{2}$ edge disjoint Hamiltonian circuits, if n is an odd number greater than or equal to 3."

- (4) Show that the number of internal vertices in a binary tree is one less than the number of pendant vertices.
- (5) Prove every tree with two or more vertices is 2 – chromatic.
- (6) Prove that a connected graph is Euler graph iff it can be decomposed into edge disjoint circuits.

(C) Attempt Any **Two** : **10**

- (1) State and prove characterization of a disconnected graph.
- (2) Prove that a tree with n vertices has $n-1$ edges.
- (3) Prove that a connected graph G is Euler if and only if all the vertices of G are of even degree.
- (4) Prove that a graph with at least one edge is 2 – chromatic if and only if it has no odd circuits.
- (5) State and prove Euler's formula for planer graph..

3 (A) Attempt Any **Three** : **6**

- (1) Show that for a Möbius mapping there are at most two fixed points.
- (2) Find the critical point of $\omega = \frac{z-1}{z+1}$.
- (3) Find the region of convergence of the power series
$$\sum \frac{(n+1)z^n}{(n+2)(n+3)}$$
.
- (4) Show that $e^z = e + e \sum_{n=1}^{\infty} \frac{(z-1)^n}{n!}$.
- (5) Identify the type of singularity of
$$\frac{\sinh z}{z^4}; 0 < |z| < \infty$$
 at $z = 0$.
- (6) Find the residue of $\frac{2z+1}{(z-1)(z+1)}$ at $z = 1$.

(B) Attempt Any **Three** :

9

- (1) Show that the composition of two bilinear mapping is again a bilinear mapping.
- (2) Obtain the bilinear mapping which maps the points $z = 1, \infty, -1$ of z -plane into the points $w = 3, 0, -3$ of w plane.
- (3) Expand $\frac{z}{(z-1)(z-3)}$ in the powers of $(z-1)$ if $0 < |z-1| < 2$.
- (4) Evaluate $\int_{|z|=2} \frac{3z^2 + 2}{(z-1)(z^2 + 9)} dz$.
- (5) Find using Cauchy's Residue Theorem $\int_C \frac{1-2z}{z(z-1)(z-2)} dz$; $C : |z| = \frac{3}{2}$
- (6) Find the Laurent's series of $f(z) = \frac{-1}{(z-1)(z-2)}$ in the domains
 - (i) $1 < |z| < 2$
 - (ii) $2 < |z| < \infty$

(C) Attempt Any **Two** :

10

- (1) Prove that every Möbius mapping maps circles or straight line into circles or straight line.
- (2) Prove that the transformation $\omega = 2z + z^2$ maps the unit circle $|z| = 1$ of z -plane into a cardioid in ω -plane.
- (3) State and prove Taylor's series expansion of an analytic function.
- (4) Prove that :

$$\sinh(z + z^{-1}) = \sum_{-\infty}^{\infty} a_n z^n \text{ where } a_n = \frac{1}{2\pi} \int_0^{2\pi} \sinh(2\cos\theta) \cos n\theta d\theta.$$

$$(5) \text{ Prove that } \int_0^{\infty} \frac{\cos ax}{x^2 + 1} dx = \frac{\pi}{2} e^{-a}.$$